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A fraction of liver transplant recipients are able to discontinue all immunosuppressive therapies without 
rejecting their grafts and are said to be operationally tolerant to the transplant. However, accurate identifica-
tion of these recipients remains a challenge. To design a clinically applicable molecular test of operational 
tolerance in liver transplantation, we studied transcriptional patterns in the peripheral blood of 80 liver trans-
plant recipients and 16 nontransplanted healthy individuals by employing oligonucleotide microarrays and 
quantitative real-time PCR. This resulted in the discovery and validation of several gene signatures comprising 
a modest number of genes capable of identifying tolerant and nontolerant recipients with high accuracy. Mul-
tiple peripheral blood lymphocyte subsets contributed to the tolerance-associated transcriptional patterns, 
although NK and γδTCR+ T cells exerted the predominant influence. These data suggest that transcriptional 
profiling of peripheral blood can be employed to identify liver transplant recipients who can discontinue 
immunosuppressive therapy and that innate immune cells are likely to play a major role in the maintenance 
of operational tolerance in liver transplantation.

Introduction
Maintenance of a normal allograft function despite complete 
discontinuation of all immunosuppressive drugs is occasionally 
reported in clinical organ transplantation, particularly following 
liver transplantation (1–9). Patients spontaneously accepting their 
grafts are conventionally considered as “operationally” tolerant 
and provide a proof of concept that immunological tolerance can 
actually be attained in humans. We and others have documented  
differences in the phenotype and gene expression of PBMCs 
obtained from operationally tolerant liver recipients as compared 
with patients requiring ongoing pharmacological immunosup-
pression (10–12). While these observations have provided valu-
able information on the cellular and molecular basis of human 
operational tolerance, the translation of this information into a 
clinically applicable molecular diagnostic test capable of identify-
ing tolerance remains a challenge. In the current study, we have 
employed gene-expression profiling technologies to construct 
and validate a series of genomic classifiers of operational toler-
ance in liver transplantation. Thus, we have analyzed peripheral 
blood specimens from 38 adult liver transplant recipients employ-
ing oligonucleotide microarrays and quantitative real-time PCR 
(qPCR) and have identified several predictive models containing 

very low numbers of genes whose mRNA levels accurately identify 
operationally tolerant liver recipients. This genomic footprint of 
operational tolerance has been compared with gene-expression 
patterns obtained from healthy individuals, validated in an inde-
pendent cohort of 23 additional liver recipients, and employed to 
estimate the prevalence of tolerance among stable liver transplant 
recipients receiving maintenance immunosuppressive drugs (STA 
recipients). In addition, the influence of potentially confounding 
clinical variables and specific PBMC subsets on tolerance-related 
gene signatures has been thoroughly assessed. Our data suggest 
that measurement of the expression of a modest number of genes 
in peripheral blood could constitute a robust noninvasive diagnos-
tic test of operational tolerance in clinical liver transplantation.

Results
Candidate gene discovery and internal validation of microarray data. To 
assess differential gene expression between tolerant and nontol-
erant recipients, oligonucleotide microarray experiments were 
conducted on PBMCs obtained from 17 tolerant liver transplant 
(TOL) and 21 nontolerant liver transplant (non-TOL) recipients 
(Table 1 and Figure 1). An initial comparative statistical analysis 
employing significant analysis of microarrays (SAM) yielded a total 
of 2,482 probes (corresponding to 1,932 genes and 147 expressed 
sequence tags) with a false discovery rate (FDR) of less than 5% 
(Figure 2). To identify the minimal set of genes capable of predict-
ing the tolerant state, predictive analysis of microarrays (PAM) was 
performed in parallel on the same 2 groups of samples, resulting 
in the identification of a subset of 26 probes corresponding to 24 
genes (all of them present in the SAM list; Figure 3A) capable of 
correctly classifying tolerant recipients, with an overall error rate 

Nonstandard abbreviations used: CONT, control nontransplanted healthy indi-
viduals; FDR, false discovery rate; MiPP, misclassified penalized posterior probability 
algorithm; non-TOL, nontolerant liver transplant (recipient); PAM, predictive analy-
sis of microarrays; qPCR, quantitative real-time PCR; SAM, significant analysis of 
microarrays; STA, stable liver transplant (recipient) under maintenance immunosup-
pressive therapy; TOL, tolerant liver transplant (recipient).
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of 0.026 (sensitivity, 1; specificity, 0.944). Multidimensional scal-
ing analysis was then performed to visually represent the proxim-
ity between TOL and non-TOL samples according to the expres-
sion of the 26 probes. As depicted in Figure 3B, TOL and non-TOL 
samples appeared as 2 clearly separated groups. Overall, analysis 
of microarray-derived expression data results in the identification 
of a genetic classifier that exhibits high accuracy in discriminating 
TOL from non-TOL samples.

Prediction of tolerance in STA recipients under maintenance immu-
nosuppression employing microarray expression data. To estimate the 
proportion of potentially tolerant individuals among STA recipi-
ents and thus externally validate the tolerance-related 26-probe 
microarray signature, we employed PAM to classify a cohort of 19 
STA patients under maintenance immunosuppressive therapy into 
TOL and non-TOL categories. Tolerance was predicted in 26% of 
cases. This rate ranged from 21% to 31% when 3 other prediction 
algorithms, namely supervector machine learning using the ker-
nel radial basis function (SVM-rbf) or linear kernel (SVM-lin), and 
K-nearest neighbors, were employed (data not shown). This esti-
mation is concordant with the rate of successful weaning we have 
observed in similarly selected STA recipients (5, 8). Furthermore, 
STA recipients identified as tolerant based on microarray expres-
sion patterns exhibited a higher proportion of peripheral blood 
Vδ1TCR+ T cells and Vδ1/Vδ2 T cell ratios than those identified 
as nontolerant recipients (Figure 4A), which is in agreement with 
2 previous immunophenotyping studies (10, 11). Multidimen-
sional scaling was next employed to plot TOL, non-TOL, and STA 
samples together based on the PAM-derived microarray expression 
signature. Notably, STA samples were grouped together with TOL 
or non-TOL samples in concordance with their predicted clinical 
phenotype (Figure 4B).

Validation of microarray expression data by qPCR. We employed 
qPCR to confirm the expression of the target genes identified by 
microarrays and to compare the expression measurements obtained 
from liver recipients with those from nontransplanted healthy 
individuals (CONT). Selected target genes for qPCR experiments 
included the 24 genes selected by PAM, 44 genes selected among 
those most highly ranked in the SAM-derived gene list, and 6 genes 

(UBD, HLA-DOB, FOXP3, LTBP3, MAN1A1, LGALS3) previously 
reported to be associated with allograft tolerance (Table 2). Periph-
eral blood samples from 16 TOL, 15 non-TOL, and 16 CONT indi-
viduals were employed for these experiments. TOL and non-TOL 
samples differed in the expression of 34 genes (Table 3 and Fig-
ure 5A). Thirty genes were differentially expressed when assessed 
by microarrays but not by qPCR. Among these, PCR primers  
and microarray probes did not recognize the same transcripts in 
11 cases. Hence, qPCR could confirm the differential expression 
of 64% of the genes selected by microarrays. The reproducibility of 
qPCR expression values was assessed by computing interpatient 
and interassay variation. Interpatient variation (median SD of 
ΔCt = 0.68) greatly exceeded interassay variation (median SD of 
ΔCt = 0.21). This suggests that the variability of the qPCR is small 
enough to reliably detect differences in gene expression between 
TOL and non-TOL recipients. Although target genes had been 
selected on account of their differential expression between TOL 
and non-TOL samples, there were 26 genes differentially expressed 
between TOL and CONT samples as well (Table 3 and Figure 5A). 
The similarities between TOL, non-TOL, and CONT expression 
patterns were then assessed in an unsupervised manner through 
multidimensional scaling analysis. This resulted in CONT samples 
being clustered in between TOL and non-TOL groups (Figure 5B). 
Taken together, qPCR expression results confirmed the validity of 
most genes identified by microarrays and revealed that tolerance-
related expression patterns differ from those of both non-TOL 
recipients and nontransplanted healthy individuals. Expression 
patterns of TOL recipients, however, appear to be closer to those 
of healthy individuals than to those of non-TOL recipients.

Prediction of tolerance in an independent validation test employing qPCR-
derived gene models. Among the candidate biomarkers identified in 
qPCR experiments on the basis of their differential expression 
between TOL and non-TOL samples, we searched for those that 
would form optimal parsimonious models capable of predicting 
tolerance status in an independent validation set. This was accom-
plished by utilizing a novel classification modeling approach 
based on the misclassified penalized posterior (MiPP) algorithm 
and incorporating an independent cohort of 11 TOL and 12 non-

Table 1
Demographic characteristics of patient groups

Clinical 	 Number	 Age 	 Time from 	 Time from 	 HCV 	 Treatment	 Center 
diagnosis		  (yr)A	 transplantation (yr)A	 weaning (yr)A	 infectionB

TOL (total)	 28	 57 (40–68)	 10.9 (4–16)	 5.6 (1–8)	 21%
Non-TOL (total)	 33	 53 (39–67)	 8.2 (4–15)	 25%
Training set	
	 TOL	 17	 55	 10.39	 7.52	 18%		  B, R, M, L
	 Non-TOL	 21	 52	 9.45		  29%	 48% CsA, 38% FK, 	 B, R, M, L
							       9% MMF, 5% SRL
Test set
	 TOL	 11	 61	 11.7	 2,6	 27%		  B, R, L
	 Non-TOL	 12	 55	 6		  17%	 25% MMF, 50% FK, 	 B, R, L
							       25% CsA
STA	 19	 55 (45–74)	 9 (5–12)		  13%	 40% CsA, 30% FK, 	 B
							       30% MMF
CONT	 16	 62 (42–70)					     B

AMean (range). BMean. CsA, cyclosporine A; FK, tacrolimus; MMF, mycophenolate mophetil; SRL, sirolimus; B, Hospital Clinic Barcelona; R, University “Tor 
Vergata”; M, Virgen de Arrixaca University Hospital; L, Université Catholique de Louvain. All patients were receiving immunosuppressive drugs in monotherapy.
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TOL recipients not previously employed for data analysis and 
from whom no microarray data were available. MiPP selected 3 
signatures of 2, 6, and 7 genes (altogether comprising 12 different 
genes), and these signatures were capable of correctly classifying 
samples included in both the training and validation sets (Table 3). 
These experiments indicate that qPCR can be employed on periph-
eral blood samples to derive robust, reproducible, and highly accu-
rate gene models of liver operational tolerance.

Identification of clinical variables implicated in the tolerance-associated 
gene signature. We performed globaltest to assess the influence 
of age, sex, type of immunosuppression, time from transplanta-
tion, peripheral blood leukocyte counts, and HCV infection sta-
tus on peripheral blood microarray gene-expression patterns. No 
significant correlation was found between the tolerance-related 
expression profile and patient age, sex, pharmacological immu-
nosuppression, and peripheral blood lymphocyte, neutrophil, 
and monocyte numbers (data not shown). Time from transplan-
tation was marginally associated with the PAM-derived 26-probe 
signature (P value < 0.042) but not with the 2,462-probe set iden-
tified by SAM. HCV infection, in contrast, had a major impact 

both on global gene-expression patterns and on the tolerance-
related expression signatures (P < 0.0003 and P < 0.0033 for the 
26- and the 2,462-probe sets, respectively). To further dissect the 
effects of HCV infection on gene-expression patterns following 
transplantation, we compared samples from chronically infected 
patients (HCV-positive) with those of noninfected (HCV-negative) 
recipients employing SAM. This resulted in the identification of 
4,725 differentially expressed probes (FDR < 5%; data not shown). 
Further, we used SAM to compare TOL and non-TOL samples 
stratified on the basis of HCV infection status. HCV-negative 
TOL and non-TOL individuals differed in 117 probes, while 528 
probes were differentially expressed between HCV-positive TOL 
and non-TOL recipients (FDR < 5%; Figure 6A). HCV infection 
was also found to influence the expression of 12 out of the 26 
probes included in the PAM-derived microarray genetic classifier, 
although correlation was tighter with tolerance than with HCV 
infection (Figure 6B). This is concordant with our finding that 
the 26-probe set classifies TOL and non-TOL samples regardless 
of HCV infection status (Figure 3B). Thus, while HCV infection 
has a major influence on peripheral blood gene expression follow-

Figure 1
Study outline. Peripheral blood samples were obtained from a total of 80 liver transplant recipients and 16 healthy individuals. Samples from TOL 
and non-TOL recipients were separated into a training set (38 samples) and a test set (23 samples). Differential microarray gene expression 
between TOL and non-TOL samples in the training set was first estimated employing SAM. This was followed by a search to identify genetic 
classifiers for prediction employing PAM, which resulted in a 26-probe signature. The PAM-derived signature was then employed to estimate the 
prevalence of tolerance among a cohort of 19 STA recipients. Next, among the genes identified by SAM and PAM, 68 genes were selected for 
validation on a qPCR platform, and the 34 validated targets were employed to identify additional classifiers employing MiPP. The 3 signatures 
identified by MiPP on the qPCR data set were then used to classify samples in the independent test of 11 TOL and 12 non-TOL recipients. None 
of the samples from the test set were employed for the genetic classifier discovery process.
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ing liver transplantation, this does not prevent accurate discrimi-
nation between TOL and non-TOL recipients.

PBMC subsets involved in the tolerance-related gene-expression footprint. 
In a previous report (11), we investigated in detail the differences 
in PBMC subsets between TOL and non-TOL liver recipients (this 
report included 32 out of the 38 TOL and non-TOL recipients 

incorporated in our current microarray study). TOL recipients 
exhibited an increased number of CD4+CD25+Foxp3+, γδTCR+, 
and δ1TCR+ T cells. In contrast, no differences were observed in 
the frequency or absolute numbers of other T cell subsets, B, NK, 
and NKT cells (11). To determine the contribution of these PBMC 
subsets to tolerance-associated expression patterns, we employed 

Figure 2
Differential gene expression 
between TOL and non-TOL 
samples. Expression profiles 
of the 100 most significant 
genes among the 2,482 probes 
identified by SAM. Results are 
expressed as a matrix view of 
gene expression data (heat 
map) where rows represent 
genes and columns represent 
hybridized samples. The inten-
sity of each color denotes the 
standardized ratio between 
each value and the aver-
age expression of each gene 
across all samples. Red pixels 
correspond to an increased 
abundance of mRNA in the indi-
cated blood sample, whereas 
green pixels indicate decreased 
mRNA levels.
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globaltest to correlate cell-subset frequencies with microarray-
derived expression levels. All 57 patients from whom microarray 
data were available (including TOL, non-TOL, and STA recipients) 
were employed for this study. First, we computed the number of 
probes from the SAM-derived 2,482-probe list whose expression 
correlated with the frequency of each specific PBMC subset. NK, 
Vδ1TCR+, and total γδTCR+ T cells influenced 314, 296, and 438 
probes, respectively, although statistical significance was only 
reached for NK (P < 0.0032) and γδTCR+ T cells (P < 0.0271). For 
comparison, a similar analysis was then conducted on the 4,725-
probe list differentiating HCV-positive from HCV-negative sam-
ples. This analysis identified CD8+ T cells as the lymphocyte subset 
influencing the greatest number of genes, although this did not 
reach statistical significance (328 probes; P < 0.14). NK, γδTCR+, 
and Vδ1TCR+ peripheral blood lymphocyte proportions also cor-
related with the expression of multiple individual genes included  
in the PAM-derived 26-probe set (Figure 6C), although only 

γδTCR+ T cell frequency was shown to be significantly associ-
ated with the 26-probe set as a whole (P < 0.0154). The results 
of these analyses indicate that both NK and γδTCR+ T cells 
influence tolerance-associated peripheral blood expression 
patterns. Considering that TOL and non-TOL recipients dif-
fer in the number of peripheral blood γδTCR+ T cells (11), it is 
clear that tolerance-related differential gene expression can be 
attributed, at least in part, to an increased number of γδTCR+ 
T cells in TOL recipients. Regarding NK cells, which are pres-
ent in similar numbers in TOL and non-TOL recipients, we 
hypothesized that the significant correlation observed might 
be due to changes in their transcriptional program. To test 
this hypothesis and further assess the contribution of other 
PBMC subsets, we conducted qPCR experiments to measure 
the expression of the 22 most significant genes from Table 3  
on cell subsets sorted from a selected group of 5 TOL and 
5 non-TOL patients. The set of 22 genes was predominantly 
expressed by CD8+, γδTCR+, and non–T cell mononuclear cells 
(Figure 7 and Table 4). Comparison of TOL and non-TOL 
samples revealed significant expression differences in CD4+, 
CD8+, γδTCR+, and non–T cell subsets (Figure 7 and Table 4). 
In addition, protein levels of IL-2RB, KLRB1, CD244, CD9, 
KLRF1, CD160, and SLAMF7 were assessed by flow cytometry 
on CD4+, CD8+, γδTCR+ T, NK, CD19+, and NKT cells from 
6 TOL, 6 non-TOL, and 5 healthy individuals. These proteins 
were mainly expressed on NK, NKT, and γδTCR+ T cells, with 
significant differences being noted between TOL, non-TOL, 
and CONT individuals (Supplemental Figure 1, A and B;  
supplemental material available online with this article; 
doi:10.1172/JCI35342DS1). These findings indicate that TOL 

and non-TOL recipients differ in the expression program of several 
PBMC subsets, mainly Vδ1TCR+ T cells and NK cells, and that in 
many cases these expression changes are unique to the tolerant 
state. Thus, tolerance-associated expression patterns appear to be 
shaped both by differences in γδTCR+ T cell number and by func-
tional changes in a variety of PBMC subsets.

Discussion
We have previously reported that gene-expression profiling employ-
ing peripheral blood specimens and oligonucleotide microarrays 
constitutes a high-throughput approach to dissect the biology 
underlying operational tolerance in human liver transplantation 
(11). The current study was designed to determine whether this 
approach could be employed to identify genomic classifiers that 
would (a) comprise modest numbers of genes, (b) provide high 
diagnostic accuracy in the identification of tolerant recipients, 
and (c) yield reproducible results across different transcriptional 

Figure 3
Discrimination between TOL and non-TOL samples on the basis of 
a 26-probe signature. (A) Bar graph showing the results obtained 
by globaltest for individual probes selected by PAM. Bar height 
above the reference line corresponds to a statistically significant 
association with tolerance. Red represents negative association; 
green represents positive association. (B) Multidimensional scal-
ing of TOL (triangles) and non-TOL (circles) samples according 
to the expression of the 26 probes selected by PAM. Distances 
between samples plotted in the 3D graph are proportional to their 
dissimilarities in gene expression. TOL and non-TOL samples 
appear as 2 well-defined and clearly separated groups.
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platforms. We first analyzed peripheral blood samples obtained 
from operationally tolerant liver recipients and from nontolerant 
recipients requiring maintenance immunosuppression employ-
ing Affymetrix microarrays. The diagnostic applicability of the 
resulting 26-probe genetic classifier was tested on an indepen-
dent cohort of 19 STA recipients. These patients were selected 
according to the clinical criteria most commonly used to enroll 
patients in immunosuppressive weaning trials (1) and are there-
fore representative of the diversity of patients to whom a diagnos-
tic test based on the identified gene signature would be applied if 
adopted for broad clinical use. Prediction of tolerance status based 
on the identified gene signature resulted in the identification of 
4 of 19 potentially tolerant recipients (26%), which matches the 
prevalence of operational tolerance observed in patients selected 
according to the above clinical criteria (1, 5, 8). The most infor-
mative genes selected in the microarray experiments were then 
validated on a qPCR platform. This resulted in the identification 
of 3 qPCR-derived composite models incorporating 2–7 genes 
exhibiting remarkable accuracy at discriminating TOL from non-
TOL samples in both training and independent validation sets. 
qPCR experiments incorporated an additional group of samples 
collected from healthy nontransplanted individuals (CONT). This 
allowed comparison of TOL and CONT expression patterns. While 
tolerance-related expression signatures resembled CONT more 
than non-TOL patterns, half of the genes differentially expressed 
between TOL and non-TOL samples were also significantly differ-

ent when comparing TOL and CONT samples. This indicates that 
a substantial proportion of identified genetic classifiers are very 
likely to be tolerance specific.

The potential impact on tolerance-related gene-expression pat-
terns of clinical variables such as age, time from transplantation, 
type of immunosuppressive therapy, and HCV status was specifi-
cally addressed on the microarray dataset. HCV infection had a 
striking impact on peripheral blood gene-expression patterns, 
markedly outweighing the effect of tolerance itself in terms of the 
number of genes influenced. The effect of HCV infection on the 
set of genes most strongly associated with tolerance was, however, 
weak, which explains why the 26-probe microarray signature could 
correctly identify tolerant recipients regardless of HCV-infection 
status. Time from transplantation was found to be marginally 
associated with the PAM-derived 26-probe signature. This is con-
cordant with the clinical observation that liver recipients with a 
longer posttransplant follow-up are more likely to become opera-
tionally tolerant (1) but clearly does not account for the expres-
sion differences between TOL and non-TOL recipients detected 
in our study population. A significant effect of pharmacological 
immunosuppression on tolerance-related gene-expression pat-
terns was excluded by the negative result of the globaltest asso-
ciation analysis and by our finding that STA recipients predicted 
to be tolerant were grouped together with TOL recipients, which 
suggests that a common expression signature prevails regardless 
of the use of immunosuppressive drugs. Hence, we provide here 

Figure 4
Estimation of potentially tolerant individuals among 
STA recipients. (A) STA recipients classified as tol-
erant (STA-Affy TOL) exhibit higher levels of Vδ1 
TCR+ T cells and Vδ1/Vδ2 T cell ratios than either 
STA recipients classified as nontolerant (STA-Affy 
non-TOL) or CONT individuals. (B) Multidimension-
al scaling plot incorporating TOL (filled triangles) 
and non-TOL (filled circles) samples together with 
STA samples classified as either tolerant (STA-Affy 
TOL, open triangles) or nontolerant (STA-Affy non-
TOL, open circles) on the basis of the expression 
of the 26 microarray probes selected by PAM. Dis-
tances between samples plotted in the 3D graph 
are proportional to their dissimilarities in gene 
expression. Data represent mean ± SD.
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Table 2
Results of qPCR gene-expression experiments

Gene 	 Fold change 	 Fold change 	 P value 	 P value 	 P < 0.05 	 P < 0.05 
symbol	 TOL vs. non-TOL	 CONT vs. TOL	 TOL vs. non-TOL	 TOL vs. CONT	 TOL vs. non-TOL	 TOL vs. CONT
CLIC3	 2.189	 1.141	 4.151 × 10–06	 1.228 × 10–01	 Y	 N
KLRF1	 1.879	 1.288	 6.755 × 10–06	 1.730 × 10–02	 Y	 Y
SLAMF7	 1.414	 1.181	 1.381 × 10–05	 4.835 × 10–02	 Y	 Y
FEZ1	 2.219	 1.474	 2.179 × 10–05	 6.350 × 10–02	 Y	 Y
CD160	 2.078	 1.693	 2.635 × 10–05	 2.114 × 10–02	 Y	 Y
CTBP2	 1.542	 1.165	 4.371 × 10–05	 2.199 × 10–02	 Y	 Y
IL2RB	 1.641	 1.434	 1.054 × 10–04	 2.704 × 10–02	 Y	 Y
OSBPL5	 1.699	 1.347	 1.193 × 10–04	 3.469 × 10–03	 Y	 Y
NKG7	 1.510	 1.380	 2.562 × 10–04	 3.280 × 10–03	 Y	 Y
FLJ14213	 1.759	 –1.165	 2.824 × 10–04	 6.278 × 10–01	 Y	 N
GNPTAB	 1.329	 1.003	 4.302 × 10–04	 3.170 × 10–01	 Y	 N
PTGDR	 1.564	 1.185	 7.148 × 10–04	 1.788 × 10–01	 Y	 N
FEM1C	 –1.380	 –1.395	 8.222 × 10–04	 1.657 × 10–03	 Y	 Y
ZNF295	 –1.879	 –1.053	 1.063 × 10–03	 5.192 × 10–01	 Y	 N
KLRD1	 1.521	 1.231	 1.092 × 10–03	 1.976 × 10–01	 Y 	 N
RGS3	 1.717	 1.021	 1.492 × 10–03	 6.282 × 10–01	 Y	 N
CX3CR1	 1.741	 –1.161	 1.981 × 10–03	 3.870 × 10–01	 Y	 N
PSMD14	 1.157	 1.042	 2.670 × 10–03	 1.925 × 10–01	 Y	 N
WDR67	 1.248	 –1.169	 2.735 × 10–03	 1.388 × 10–01	 Y	 N
PTCH1	 1.390	 1.223	 2.850 × 10–03	 1.428 × 10–01	 Y	 N
ERBB2	 1.939	 1.161	 3.286 × 10–03	 6.274 × 10–01	 Y	 N
GEMIN7	 1.270	 –1.102	 3.662 × 10–03	 3.954 × 10–01	 Y	 N
CD9	 1.223	 1.261	 4.225 × 10–03	 1.468 × 10–02	 Y	 Y
CD244	 1.371	 1.202	 4.250 × 10–03	 9.183 × 10–02	 Y	 N
NCALD	 1.366	 1.189	 5.190 × 10–03	 6.604 × 10–02	 Y	 N
EPS8	 1.434	 1.366	 5.615 × 10–03	 2.913 × 10–02	 Y	 Y
PDE4B	 –1.521	 –1.007	 7.337 × 10–03	 7.564 × 10–01	 Y	 N
KLRB1	 1.292	 1.032	 7.491 × 10–03	 7.171 × 10–01	 Y	 N
ZNF267	 –1.542	 1.185	 8.269 × 10–03	 2.471 × 10–03	 Y	 Y
FANCG	 1.257	 –1.010	 1.392 × 10–02	 1.203 × 10–01	 Y	 N
UBD	 1.753	 1.532	 3.070 × 10–02	 6.397 × 10–02	 Y	 Y
ALG8	 1.177	 –1.129	 3.095 × 10–02	 3.180 × 10–01	 Y	 N
MAN1A1	 1.218	 1.270	 3.145 × 10–02	 3.242 × 10–03	 Y	 Y
IL8	 –4.579	 1.682	 3.661 × 10–02	 1.023 × 10–02	 Y	 Y
DCTN2	 1.083	 1.007	 8.705 × 10–02	 8.754 × 10–01	 N	 N
DAB2	 1.279	 1.240	 1.110 × 10–01	 1.550 × 10–01	 N	 N
FOXP3	 1.310	 –1.072	 1.218 × 10–01	 2.926 × 10–01	 N	 N
UBE2V2	 1.072	 –1.094	 1.315 × 10–01	 2.393 × 10–01	 N	 N
PPM1B	 –1.253	 –1.061	 1.344 × 10–01	 2.996 × 10–01	 N	 N
NOTCH2	 1.110	 1.149	 1.439 × 10–01	 2.420 × 10–02	 N	 Y
DOCK11	 –1.057	 –1.050	 1.605 × 10–01	 2.943 × 10–01	 N	 N
THBD	 –1.261	 1.141	 1.654 × 10–01	 1.600 × 10–01	 N	 N
PPM1B	 –1.106	 –1.087	 1.737 × 10–01	 3.970 × 10–01	 N	 N
UCHL5	 1.061	 –1.061	 1.840 × 10–01	 7.136 × 10–01	 N	 N
NOLA1	 1.352	 –1.653	 1.988 × 10–01	 1.273 × 10–06	 N	 Y
PSMF1	 1.279	 1.017	 2.131 × 10–01	 3.000 × 10–01 	 N	 N
TGFBR3	 1.091	 1.218	 2.157 × 10–01	 8.922 × 10–02	 N	 N
C10orf119	 1.193	 –1.007	 2.244 × 10–01	 5.148 × 10–01	 N	 N
DCUN1D1	 1.003	 –1.057	 3.003 × 10–01	 7.313 × 10–01	 N	 N
HIP2	 1.017	 –1.042	 3.046 × 10–01	 8.832 × 10–01	 N	 N
RAD23B	 –1.007	 1.079	 3.147 × 10–01	 2.379 × 10–01	 N	 N
TRIAP1	 –1.007	 –1.068	 3.286 × 10–01	 2.516 × 10–01	 N	 N
EIF5A	 –1.064	 1.102	 4.298 × 10–01	 3.466 × 10–02	 N	 Y
TRD@	 1.075	 –1.297	 4.494 × 10–01	 1.622 × 10–01	 N	 N
LTBP3	 –1.117	 –1.390	 4.685 × 10–01	 6.387 × 10–03	 N	 Y
HLA–DOB	 –1.133	 –1.165	 5.054 × 10–01	 2.698 × 10–01	 N	 N
RB1CC1	 –1.028	 –1.214	 5.303 × 10–01	 2.965 × 10–03	 N	 Y
ATXN10	 –1.025	 –1.169	 5.549 × 10–01	 1.649 × 10–03	 N	 Y
TRA@	 –1.173	 –2.078	 5.959 × 10–01	 9.081 × 10–04	 N	 Y
MRPS31	 1.261	 –1.429	 6.005 × 10–01	 6.246 × 10–05	 N	 Y
IKZF3	 1.031	 –1.16	 6.317 × 10–01	 1.080 × 10–01	 N	 N
DTNBP1	 1.193	 1.075	 6.541 × 10–01	 6.375 × 10–01	 N	 N
GRSF1	 –1.032	 –1.157	 6.813 × 10–01	 3.847 × 10–02	 N	 Y
UBB	 1.091	 1.025	 7.206 × 10–01	 1.044 × 10–01	 N	 N
NOLA1	 –1.014	 –1.165	 7.708 × 10–01	 1.147 × 10–02	 N	 Y
C10orf110	 1.376	 1.149	 7.996 × 10–01	 8.534 × 10–01	 N	 N
COPZ1	 –1.053	 –1.053	 8.605 × 10–01	 5.216 × 10–01	 N	 N
LGALS3	 –1.003	 1.270	 8.927 × 10–01	 2.077 × 10–02	 N	 Y
S100A10	 –1.025	 –1.068	 9.557 × 10–01	 7.348 × 10–01	 N	 N

Y, yes; N, no.
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a series of robust predictive models containing a strikingly small 
number of features capable of accurately discriminating between 
operationally tolerant liver recipients and those requiring ongoing 
pharmacological immunosuppression on the basis of peripheral 
blood gene-expression patterns.

The underlying biology of operational tolerance in humans is 
still largely unknown. In the current work we have conducted a 

whole genome gene-set analysis to gain unbiased insight into the 
mechanisms of operational tolerance following liver transplanta-
tion (see Supplemental Data). This analysis has revealed that the 
expression signature associated with operational liver allograft tol-
erance is mainly characterized by enrichment in genes encoding for 
a variety of NK cell–surface receptors expressed by NK, CD8+, and 
γδTCR+ T cells. The influence of NK and γδTCR+ T cells on toler-

Table 3
Most predictive genetic classifiers identified by MiPP in qPCR expression data set and their performance in training and independent test sets

Gene signatures	 Selection 	 Prediction rule	 Class 	 Mean ER	 Mean ER in  
	 method		  comparison	  in training set	 validation set
KLRF1, SLAMF7	 MiPP	 LDA, QDA, SVM-rbf	 2 class	 0.064	 0.13
KLRF1, NKG7, IL2RB, KLRB1, FANCG, GNPTAB	 MiPP	 SVM-rbf	 2 class	 0.032	 0.17
SLAMF7, KLRF1, CLIC3, PSMD14, ALG8, CX3CR1, RGS3	 MiPP	 SVM-lin	 2 class	 0.064	 0.13

ER, overall error rate; LDA, lineal discriminant analysis; QDA, quadratic discriminant analysis; SVM-lin, supervector machine with lineal function as kernel; 
SVM-rbf, supervector machine with radial basis function.

Figure 5
qPCR validation of selected microarray gene-expression measurements. (A) Heat map representing the expression profiles of genes with sig-
nificant differential expression when comparing TOL with non-TOL and TOL with CONT samples (t test; P < 0.05). The intensity of each color 
denotes the standardized ratio between each value and the average expression of each gene across all samples. Red pixels correspond to an 
increased abundance of mRNA in the indicated blood sample, whereas green pixels indicate decreased mRNA levels. The checkerboard plot 
on the left represents the statistical significance of TOL versus non-TOL and TOL versus CONT comparisons, with black squares corresponding 
to P < 0.05 by t test. (B) Multidimensional scaling plot incorporating TOL (triangles), non-TOL (circles), and CONT (filled) samples. Distances 
between samples plotted in the 3D graph are proportional to their dissimilarities in gene expression as assessed by qPCR. CONT samples 
cluster between TOL and non-TOL samples.
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ance-related expression patterns has been further confirmed by the 
demonstration of a significant association between the expression 
levels of the most informative genes and peripheral blood NK and 
γδTCR+ T cell frequencies and by the finding that, in TOL recipi-
ents, both γδTCR+ and NK cells (together with other PBMC sub-
sets) exhibit unique expression markers. There are 2 main γδTCR+ 
T cell subsets in human peripheral blood: Vδ1 and Vδ2. In healthy 
individuals, Vδ2TCR+ T cells largely predominate in peripheral 
blood (>80%), while Vδ1TCR+ T cells are the major subtype in tis-
sues such as intestine, liver, and spleen (13). In operationally toler-
ant liver recipients, in contrast, peripheral blood Vδ1TCR+ T cells 
expand and typically outnumber Vδ2TCR+ T cells (10, 11). Our 

current analysis indicates that Vδ1TCR+ T cells are the only γδTCR+ 
T cell subset clearly influencing tolerance-related transcriptional 
signatures. In addition, we provide evidence that peripheral blood 
Vδ1TCR+ T cells from tolerant liver recipients exhibit unique 
expression and cell-surface traits that distinguish them from 
those present in either nontolerant recipients or nontransplanted 
healthy individuals. Vδ1TCR+ T cells have been reported to exert 
immunoregulatory functions in a variety of nontransplantation 
experimental and clinical settings (14–19). In liver transplantation, 
further studies are needed to dissect the functional properties of 
Vδ1TCR+ T cells and to determine whether these cells have direct 
suppressive abilities on alloaggressive lymphocytes or act by pro-

Figure 6
Impact of HCV infection and PBMC subsets on global gene-expression measurements. (A) Venn diagram representing the number of statistically 
significant genes between TOL and non-TOL samples stratified on the basis of HCV infection status (SAM; FDR < 0.05). (B) Bar graph showing 
the influence of tolerance (upper panel) and HCV infection (lower panel) on the 26 individual probes selected by PAM according to globaltest. 
Bar height above the reference line corresponds to a statistically significant association. Red represents negative association; green represents 
positive association. (C) Checkerboard plot representing the correlation between PBMC subset frequency and the expression of the individual 26 
probes selected by PAM. Results are shown as a matrix where white squares correspond to nonsignificant associations and black squares to sig-
nificant associations (P <0.05) according to globaltest. For comparison, tolerance and HCV status have been included in the analysis as well.
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ducing growth factors and repairing tissue damage, as has been 
shown for the intestinal mucosa (18, 20–22).

On the basis of gene expression and flow cytometry data pre-
sented here, it is clear that tolerant liver recipients are distinct not 
only from recipients requiring maintenance immunosuppression 

but also from nontransplanted healthy individuals. This suggests 
that in liver transplantation, achievement of operational toler-
ance is unlikely to be due to a “reinitialization” of the immune 
system resulting in recognition of the transplanted graft as “self.” 
On the contrary, tolerant liver recipients appear to have developed 

Figure 7
Quantitative expression of the 22 most informative genes as assessed by qPCR in sorted peripheral blood lymphocytes. Relative expression of 
the 22 genes discriminating TOL from non-TOL samples in sorted CD4+, CD8+, γδTCR+ T cells, and non–T mononuclear cells obtained from 5 
TOL and 5 non-TOL recipients. Data are expressed as mean normalized ΔCt ± SD. Only genes in which statistical differences were observed 
are shown here. *P < 0.05 (t test) between TOL and non-TOL
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tolerogenic pathways not readily detectable in peripheral blood 
of healthy individuals but capable of ensuring the protection of 
the liver allograft.

Functional profiling of human kidney allograft tolerance 
employing peripheral blood samples has been previously reported 
by Brouard et al. (23) utilizing a 2-color cDNA microarray platform 
(lymphochip) mainly containing immune-related genes (24). While 
it would be critical to find common features between operationally 
tolerant kidney and liver recipients, comparison of both studies is 
problematic. First, the 2 array platforms employed (lymphochip 
and Affymetrix U133 Plus 2.0 arrays) have only 4,733 probes in 
common, with just 543 of them being present in the SAM-derived 
2,482-gene list discriminating between TOL and non-TOL liver 
recipients (data obtained employing the MatchMiner tool; ref. 25). 
This number is very low for detailed evaluation of genome-wide 
transcriptional similitudes, particularly when comparing 2 distant 
clinical settings and utilizing 2 different expression platforms. 
Second, the 2 studies analyze different patient groups (i.e., our 
study is focused on identifying tolerant individuals among STA 
recipients while Brouard et al. compare tolerant kidney recipients 
with chronic rejectors). Despite these limitations, a comparison 
restricted to functional pathway profiles suggests that the mecha-
nisms accounting for operational tolerance in liver transplan-
tation are distinct from those active in kidney recipients. Thus, 
operationally tolerant kidney recipients appear to be character-
ized by a state of immune quiescence with marked downregula-
tion of genes involved in lymphocyte trafficking and activation 
and upregulation of genes responsible for cell-cycle control (23). In 
contrast, in operationally tolerant liver recipients, there is a mani-
fest influence on expression patterns of cellular components of the 
innate immune cells while changes in proinflammatory pathways 

are barely noticeable except for HCV-positive recipients. 
Furthermore, a role for B cells in liver allograft toler-
ance is not supported by either immunophenotyping 
or gene expression data, in contrast to what has been 
reported in kidney transplantation (26, 27).

In short, our study reveals that measurement of the 
expression levels of a small set of genes in peripheral 
blood could be useful to accurately identify liver recipi-
ents who are able to accept their grafts in the absence 
of pharmacological immunosuppression. Validation of 
our findings in prospective immunosuppression wean-
ing trials would open the door to the possibility of with-
drawing immunosuppressive drugs in recipients with 
high likelihood of being tolerant. Further, functional 
analysis of expression patterns suggests that molecular 
pathways involved in the activation and effector func-
tion of innate immunity cell types (NK and γδTCR+ 
T cells) are central to the maintenance of operational 
tolerance following liver transplantation. Altogether, 
our work highlights the value of peripheral blood tran-
scriptional profiling in the immune monitoring of 
liver transplant recipients and provides insight into the 
pathogenesis of human allograft tolerance.

Methods
Patients. Peripheral blood samples were collected from a cohort 
of 28 TOL recipients and 33 liver recipients in whom drug 
weaning was attempted but led to acute rejection, requir-
ing reintroduction of immunosuppressive drugs (non-TOL). 

TOL recipients had been intentionally weaned from immunosuppressive 
therapy under medical supervision. Criteria employed in selecting patients 
for immunosuppression weaning in the participating institutions were as 
follows: (a) more than 3 years after transplantation; (b) single-drug immu-
nosuppression; (c) absence of acute rejection episodes in the previous  
12 months; (d) absence of signs of acute/chronic rejection in liver histology; 
and (e) absence of autoimmune liver disease before or after transplantation. 
In TOL recipients, blood was collected more than 1 year after successful 
immunosuppressive drug discontinuation, while in non-TOL recipients, 
specimens were harvested more than 1 year after complete resolution of 
the acute rejection episode (at the time of blood collection, all non-TOL 
recipients had normalized liver function tests and were receiving low-dose 
immunosuppression in monotherapy). Additionally, peripheral blood sam-
ples were also obtained from 16 age-matched healthy controls (CONT) and 
19 STA recipients that fulfilled the aforementioned clinical criteria for drug 
weaning. In patients fulfilling these criteria, the prevalence of operational 
tolerance ranges between 20% and 30% (5, 8). Clinical and demographic 
characteristics of patients included in the study are summarized in Table 1.  
The study was accepted by the Institutional Review Boards of all partici-
pating institutions, and informed consent was obtained from all patients.  
A report containing blood-cell immunophenotyping findings together with 
preliminary microarray gene expression data obtained from a subset of the 
patients enrolled in the current study has been recently published (11).

Microarray experiments. Microarray experiments were conducted on PBMCs 
obtained from 21 non-TOL, 17 TOL, and 19 STA recipients. PBMCs were 
isolated employing a Ficoll-Hypaque layer (Amersham Biosciences), total 
RNA was extracted with TRIzol reagent (Life Technologies), and the derived 
cRNA samples were hybridized onto Affymetrix Human Genome U133 Plus 
2.0 arrays containing 54,675 probes for 47,000 transcripts (Affymetrix). 
Sample handling and RNA extraction were performed by the same investi-
gator in all cases (M. Martínez-Llordella).

Table 4
Statistical significance of the differences in gene expression between TOL 
and non-TOL recipients in sorted lymphocyte subset.

Gene symbol	 P value 	 P value 	 P value 	 P value 	 P value  
	 CD4+	 CD8+	 γδTCR+	 non–T cell	 PBMCs
SLAMF7	 0.0061	 0.0941	 0.4573	 0.0007	 0.0001
NKG7	 0.0110	 0.0337	 0.3531	 0.0438	 0.0001
CX3CR1	 0.0215	 0.1267	 0.6635	 0.1371	 0.0002
RGS3	 0.0000	 0.0005	 0.2808	 0.0479	 0.0005
FLJ14213	 0.0238	 0.0554	 0.2448	 0.0170	 0.0006
CD244	 0.0157	 0.0698	 0.5112	 0.0330	 0.0028
CD9	 0.2289	 0.0828	 0.1404	 0.0040	 0.0102
FEZ1	 0.0033	 0.0350	 0.5383	 0.0485	 0.0137
KLRF1	 0.0240	 0.1129	 0.0475	 0.0447	 0.0196
PTGDR	 0.0240	 0.0557	 0.3354	 0.0245	 0.0214
OSBPL5	 0.0045	 0.0031	 0.4291	 0.0143	 0.0217
C10orf119	 0.4467	 0.7091	 0.9819	 0.1904	 0.0290
CD160	 0.0138	 0.2793	 0.2466	 0.1336	 0.0305
CLIC3	 0.1690	 0.1062	 0.0620	 0.1224	 0.0413
IL2RB	 0.3262	 0.1453	 0.1797	 0.1393	 0.0495
FANCG	 1.0000	 0.0323	 0.2030	 0.0057	 0.0858
GEMIN7	 0.0801	 0.7105	 0.7819	 0.1007	 0.2089
CTBP2	 0.0742	 0.2258	 0.7418	 0.1058	 0.3165
GNPTAB	 0.1007	 0.0026	 0.8648	 0.0241	 0.4113
KLRB1	 0.2533	 0.2551	 0.9510	 0.0531	 0.5167
PSMD14	 0.7584	 0.7114	 0.6784	 0.1182	 0.7170
ALG8	 0.6544	 0.5959	 0.5912	 0.4052	 0.9882
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Microarray data normalization. Microarray data from 57 samples (21 non-
TOL, 17 TOL, and 19 STA) were normalized using the guanidine-cytosine 
content-adjusted robust multiarray algorithm, which computes expression 
values from probe-intensity values incorporating probe-sequence informa-
tion (28). Next, we employed a conservative probe-filtering step excluding 
those probes not reaching a log2 expression value of 5 in at least 1 sample, 
which resulted in the selection of a total of 23,782 probes out of the origi-
nal 54,675 set. In order to eliminate nonbiological experimental variation 
or batch effects observed across successive batches of microarray experi-
ments, we applied ComBat approach, which uses nonparametric empirical 
Bayes frameworks for data adjustment (29).

Differential expression assessment and prediction. An outline of the study 
design is depicted in Figure 1. We first used SAM (30) to identify genes 
differentially expressed between the TOL and non-TOL groups (17 and 
21 samples, respectively) within the filtered 23,782-probe set. SAM uses 
modified t test statistics for each gene of a dataset and a fudge factor to 
compute the t value, thereby controlling for unrealistically low standard 
deviations for each gene. Furthermore, SAM allows control of the FDR by 
selecting a threshold for the difference between the actual test result and 
the result obtained from repeated permutations of the tested groups. For 
the current study, we employed SAM selection using FDR of less than 5% 
and 1,000 permutations on 3 comparison groups: TOL versus non-TOL, 
TOL HCV-positive versus non-TOL HCV-positive, and TOL HCV-negative 
versus non-TOL HCV-negative. Differential gene expression was further 
explored by using the nearest shrunken centroid classifier implemented in 
the PAM (31) package to identify within the 23,782-probe set the minimal 
set of genes capable of predicting the tolerant state with an overall error 
rate of less than 5%. This method incorporates an internal cross-validation 
step during feature selection in which the model is fit on 90% of the sam-
ples and then the class of the remaining 10% is predicted. This procedure 
is repeated 10 times to compute the overall error (10-fold cross-validation). 
The PAM classifier was then used on the 38-sample set to perform mul-
tidimensional scaling analysis on the basis of between-sample Euclidean 
distances as implemented by the isoMDS function in R. This method is 
capable of visualizing high-dimensional data (such as multiple expression 
measurements) in a 3D graph in which the distances between samples are 
kept as unchanged as possible. Finally, the PAM classifier was employed to 
predict class in the set of 19 samples obtained from STA patients. Detailed 
information on the microarray expression dataset in available online 
(http://bioinfo.ciberehd.org/asf/).

Correlation of microarray data with clinical variables and PBMC subsets. The 
globaltest algorithm (32) from the Bioconductor package (http://bio-
conductor.wustl.edu/BioC2.1/bioc/html/globaltest.html) was employed 
to determine whether potentially confounding clinical variables such as 
patient age, sex, time from transplantation, HCV status, immunosuppres-
sive therapy (tacrolimus, cyclosporine A, or mycophenolate mophetil), and 
peripheral blood monocyte, lymphocyte, and neutrophil counts could be 
influencing gene-expression levels. The same strategy was employed to esti-
mate the correlation between microarray expression data and the propor-
tion of peripheral blood CD4+CD25+, CD4+Foxp3+, CD4+, CD8+, CD19+, 
NKT, total γδTCR+, Vδ1TCR+, and Vδ2TCR+ T cells. Globaltest is a method 
to determine whether the expression pattern of a prespecified group of 
genes is related to a clinical variable, which can be either a discrete variable 
or a continuous measurement. This test is based on an empirical Bayes-
ian generalized linear model, where the regression coefficients between 
gene-expression data and clinical measurements are random variables. A 
goodness-of-fit test is applied on the basis of this model. The globaltest 
method computes a statistic Q and a P value to measure the influence of 
our group of genes on the clinical variable measured. For each probe, the 
influence (Q) in predicting measured clinical variable is estimated against 

the expected value, and ranked among the probes under study. The weight 
of each probe is also assessed by the z-score considering the standard devia-
tion of each probe in all samples used in the analysis.

qPCR experiments. The expression pattern of a group of 68 target genes 
and 4 housekeeping genes (18S, GUS, HPRT1, and GAPDH) was measured 
by qPCR employing the ABI 7900 Sequence Detection System and LDA 
microfluidic PCR cards (PE Applied Biosystems) on peripheral blood sam-
ples obtained from 15 non-TOL, 16 TOL, and 16 CONT individuals. Select-
ed target genes included the 24 genes identified by PAM, 44 genes selected 
among those most highly ranked in the SAM-derived gene list, and 6 genes 
(UBD, HLA-DOB, FOXP3, LTBP3, MAN1A1, LGALS3) selected on the basis 
of previous reports (11, 23, 26, 33, 34). To quantify the levels of mRNA, we 
normalized the expression of the target genes to the housekeeping gene 
HPRT1 (which was found to be the most stably expressed gene among the 
4 housekeeping genes selected) and presented the results as relative expres-
sion between cDNA of the target samples and a calibrated sample accord-
ing to the ΔCt method. All qPCR experiments were performed in duplicate. 
Total RNA was treated with DNAse reagent (Ambion; Applied Biosystems), 
and reverse transcription performed using Multiscribed Reverse Transcrip-
tase Enzyme (PE Applied Biosystems). Results were analyzed employing 
standard 2-class unpaired t test. Reproducibility of gene expression mea-
surements was assessed by comparing interpatient and interassay variation 
in a set of qPCR experiments that included 22 genes and samples from 16 
recipients. For these experiments, 2 peripheral blood samples collected at 2 
separated time points (mean, 57 days; range, 11–244 days) were employed. 
Interassay variation was defined as the variation between PCR runs car-
ried out employing the 2 different peripheral blood samples from the same 
patient. To construct classification models containing a minimal set of 
features (genes) with the lowest possible classification error both in train-
ing and independent test sets, we employed MiPP (35) on the 34 target 
genes differentially expressed between TOL and non-TOL samples (t test;  
P < 0.05). MiPP is a recently developed method for assessing the perfor-
mance of a prediction model that computes the sum of the posterior classi-
fication probabilities penalized by the number of incorrectly classified sam-
ples. The MiPP application performs an exhaustive search for gene models 
by sequentially selecting the most predictive genes and automatically 
removing the selected genes in subsequent runs. For our analysis, we con-
ducted 10 sequential runs and employed all predictive algorithms included 
in the MiPP application (linear discriminant analysis, quadratic discrimi-
nant analysis, support vector machine learning, and logistic regression). 
Internal computational validation was performed employing both 10-fold 
cross-validation and random-split validation (number of splits = 100).  
The composite models obtained were then employed to predict tolerance 
in the independent test set of 11 TOL and 12 non-TOL samples from which 
no microarray data were available. The 3 models with a lower classification 
error rate (in training set and test set) were selected.

Peripheral blood immunophenotyping. Flow cytometry immunophenotyping 
data from PBMCs obtained from 16 TOL and 16 non-TOL recipients have 
been reported elsewhere (11). In the current study, we assessed the propor-
tion of CD4+CD25+, CD4+Foxp3+, total γδTCR+, δ1 γδTCR+, δ2 γδTCR+, 
CD19+, NK, and NKT cell subsets on peripheral blood specimens obtained 
from 19 STA recipients and from 1 TOL and 5 non-TOL recipients (from 
whom no previous data were available). Immunophenotyping results from 
all 57 recipients were employed to correlate PBMC subset frequencies with 
microarray expression data. Foxp3 fluorescent monoclonal antibodies 
were purchased from eBioscience. All remaining antibodies were purchased 
from BD Biosciences.

Peripheral blood cell sorting experiments. Positive selection of CD4+, CD8+, 
and γδTCR+ T cell subsets from Ficoll-isolated PBMCs was performed 
employing Miltenyi magnetic beads according to the manufacturer’s 
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instructions. Purity of sorted cell populations was consistently greater 
than 90%. Total RNA was extracted from CD4+, CD8+, γδTCR+, and  
non–T mononuclear cell subsets employing TRIzol reagent, and gene 
expression quantification was conducted employing qPCR as described. 
Peripheral blood samples from 5 TOL and 5 non-TOL patients were 
employed for these experiments.

Statistics. Two-tailed Student’s t test was employed to compare qPCR 
gene expression levels and immunophenotyping data. Statistical signifi-
cance was defined as P < 0.05.
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