Supplementary Figure Legends

S1. S1PR2-deficient mice on a 129S/B6 background do not exhibit sexually

dimorphism in BBB permeability. A. Western blot analysis of S1PR₂ in brain extracts from wild-type (WT) and S1PR₂^{-/-} mice. **B.** Male (light and dark blue bars) and female (pink and red bars) S1PR₂^{-/-} mice were examined for BBB NaFluorescein permeability within CTX, CB, and SC, normalized to serum values for individual mice (5-8 mice per group). Data are reported as arbitrary fluorescence values, normalized to mean \pm S.E.M. values for naïve male C57BL/6 in each CNS region.

S2. Sexually dimorphic expression of S1PR2 in SJL cerebella is not controlled by

the Y chromosome. Protein lysates derived from CNS regions of naïve male and female SJL and male SJL carrying a B10.S Y chromosome (SJL.Y^{B10.S}) were probed for S1PR2 (red), with β-Tubulin (green) probed as a loading control. Data are reported as density values of S1PR2 normalized to density values for β-Tubulin. Group data are normalized to mean values for normal male SJL mice in each CNS region. Data are mean values of 3-4 mice per group. Error bars represent +/- 1 SEM. All data were analyzed via 1-way ANOVA. *p<0.05.

S3. Sex and strain differences in BBB permeability are not due to dimorphic expression of Claudin-5. Protein lysates derived from CNS regions of naïve male and female C57/BI6 and SJL mice were probed for S1PR2 (red), with β -Tubulin (green) probed as a loading control. Data are reported as density values of Claudin-5 normalized to density values for β -Tubulin. Group data are normalized to mean values for male C57/BI6 mice in each CNS region. Data are mean values of 3 mice per group. Error bars represent +/- 1 SEM. All data were analyzed via 2-way ANOVA. S4. Sexually dimorphic expression of S1PR2 in female SJL cerebella is not controlled by gonadal hormones. A. Representative images of uterine horns and upper 1/3 of the vagina of placebo- versus 17β -estradiol(17β E2)-treated, ovariectomized female SJL mice, and sham-operated, placebo- and 17β E2-treated, ovariectomized female SJL mice after immunization with PLP peptide (PLP immunization). **B.** Mean distribution of the uterine weights and upper 1/3 of the vagina in same groups of mice as in (A). Uterine weights of 17β E2-treated, ovariectomized SJL females with or without PLP immunization were significantly increased compared with sham and placebo tissues, as assessed via one-way ANOVA; p < 0.0001, followed by Bonferroni post-hoc test, for 5 mice per group. C. Sham- and placebo-treated, PLP-immunized mice exhibited similar cumulative body weights while 17β E2-treated, PLP immunized SJL females differ significantly. One-way ANOVA; p<0.0001, followed by Bonferroni post-hoc test, for 5 mice per group. **D.** Mean of cumulative clinical scores for sham-ovariectomized, and placebo-, and 17β -estradiol-treated, ovariectomized mice after PLP immunization. Note that 17β -estradiol-treated, ovariectomized mice do not develop EAE. One-way ANOVA p <0.0001, followed by Bonferroni post-hoc test, for 5 mice per group. E. Protein lysates derived from CNS regions of sham and ovariectomized naïve SJL female mice and from those immunized with PLP, with and without 17β -estradiol (17β E2) replacement, were probed for S1PR2 (red), with β -Tubulin (green) probed as a loading control. Data are reported as density values of S1PR2 normalized to density values for β -Tubulin. Group data are normalized to mean values for normal male SJL mice in each CNS region. Data are mean values of 5 mice per group. Error bars represent +/- 1 SEM. All data were analyzed via 1-way ANOVA.

S5. Inhibition of S1PR₂ signaling does not improve EAE progression in male SJL. A. Clinical score of male SJL immunized with PLP and treated with either vehicle (black) or 1.5 mg/kg JTE-013 (white) when mice reached a score of 2, for 10 consecutive days (gray bar). B. Mean of highest severity score and (c) mean of cumulative scores of mice in (A). Tx: treatment; error bars ± 1 S.E.M.

S6. Pharmacological blockade of S1PR₂ signaling does not enhance retention of body weight during EAE. A-C. Body weight of SJL immunized with PLP and treated with either vehicle (black) or 1.5 mg/kg JTE-013 (white) when mice reached a score of 2, for either (A) females treated 10 or (B) 30 consecutive days or (C) males treated for 10 consecutive days (gray bar). D. Transformed body weight of WT (black) or S1PR₂ -/- or wild type mice immunized with MOG. Error bars ± 1 S.E.M.

S7. S1PR₂ inactivation ameliorates alterations in BBB permeability. A.

Immunohistochemical detection of albumen in the CTX, CB and SC of vehicle- (veh) versus JTE0-13-treated female SJL mice with EAE at peak of disease. Images are representative of 3 images each from 4-5 mice/group. **B.** Immunohistochemical detection of albumen in the CTX, CB and SC of wild-type (WT) versus S1PR₂ -/- mice mice. Images are representative of 3 images each from 3-4 mice/group. Scale bars = 50 μ m.

S8. S1P dysregulates CNS endothelial barrier structure and function independent of **S1PR1**, **Rac1**, **clathrin-dependent endocytic**, **and macropinocytic pathways**. **A-D**. Paracellular permeability of *in vitro* BBB cultures was assessed by electrode recording of transendothelial electrical resistance (TEER), reported in ohm/cm² (**A**) TEER after treatment of *in vitro* BBB cultures with 1000 nM exogenous S1P for 4h, +/- treatment with the S1PR1 specific agonist SEW2871 (1000 nM) at 2h **(B-D)** TEER after 1000 nM S1P treatment of BBB cultures pretreated for 2h with **(B)** the clathrin endocytosis inhibitor chlorpromazine (CPMZ, 10ug/ml), **(C)** the macropinocytosis/PI3K inhibitor wortmannin (100nM) or **(D)** Rac1 inhibitor Z62954982 (1000 nM). **E-H**. Immunocytochemical (ICC) staining of AJs in HCMEC/D3 cells via labeling of VEcadherin (red, left and middle panels) and confocal z-stack reconstruction of HCMEC/D3 cells (right panels) demonstrating polarized expression of the canonical apical marker gamma-glutamyltranserfase-1 (GGT1, green) and basolateral CXCL12 (red) were performed after treatment with vehicle (left panels) or 1000 nM S1P (middle panels) for 4h, both with SEW2871 **(E)**, CPMZ **(F)**, wortmannin **(G)**, or Z62954982 **(H)** treatment at 2h. Inhibitor concentrations in **E-H** are identical to those in **A-D**. TEER values are means of 6-9 replicates taken from 2-3 independent experiments, analyzed via repeated measures two-way ANOVA. ICC images are representative images taken from 2-3 independent experiments. *p<0.05; **p<0.01; ***p<0.01.

S9. SiRNA knockdown confirms pharmacological data showing S1PR2-mediated dysregulation of CNS endothelial barriers *in vitro*. **A.** Immunocytochemical staining in HCMEC/D3 showing specificity of knockdown for S1PR1 (top) and S1PR2 (bottom) after 2d incubation in normal culture medium, or with 25nM siRNA targeting S1PR1, S1PR2, or a non-targeting control siRNA. Protein levels are assessed by fluorescence intensity, normalized to mean values for untreated cells. **B.** Paracellular permeability of *in vitro* BBB cultures was assessed by electrode recording of transendothelial electrical resistance (TEER), reported in ohm/cm². Cultures were incubated for 2d with 25nM siRNA targeting S1PR1, S1PR2, or a non-targeting control siRNA. After this, cultures were treated with either vehicle or 1000nM S1P for 4h, with TEER measurements every 2h. **C.** Immunocytochemical (ICC) staining of adherens junctions in HCMEC/D3 cells via

labeling of VE-cadherin (red). Cultures were incubated for 2d in normal culture medium, or with 25nM siRNA targeting S1PR1, S1PR2, or a non-targeting control siRNA. After this, cultures were treated with either vehicle or 1000nM S1P for 4h, followed by fixation and immunostaining. Fluorescence intensities are means of 3 replicates, +/- SEM, compared via one-way ANOVA. TEER values are means of 6 replicates taken from 2 independent experiments, analyzed via repeated measures two-way ANOVA. ICC images are representative images of 6 replicates, taken from 2 independent experiments. *p<0.05; **p<0.01; ***p<0.001.

S10. CXCL12 exhibits a sexually dimorphic expression in female SJL in the same **CNS regions where S1PR₂ is also dimorphic. A-B.** Spinal cord expression of CXCL12 (red) and CD31 (green) in naïve male and female mice from three different mouse strains, commonly used for EAE: A. B10.PL (top row), C57BL/6 (middle row), and SJL (lower row), nuclei stained with ToPro (blue) nuclear stain (IC, isotype control). B. Percentage of apicobasal distribution of CXCL12 in relation to CD31 in spinal cord venules. C. Supra-spinal expression of CXCL12 (red) and CD31 (green) in naïve male and female SJL, nuclei stained with ToPro (blue) nuclear stain. D. Percentage of apicobasal distribution of CXCL12 on supra-spinal CNS regions: A: prelimbic cortex, B: motor cortex, C: retrosplenial cortex, D: hippocampus, E: corpus callosum, F: colliculi, G: = pons, H: cerebellum; white columns: abluminal, black columns: lumenal. Data derived from venules analyzed within 30 images per brain region for 3-5 mice/treatment group and are expressed as the mean percentages of vessels with abluminal (white box), lumenal (black box) or absent (gray box) CXCL12 signal; *p<0.05; **p<0.01; ***p<0.001 for chi-squared comparisons between CXCL12 locations within each brain region.

S11. Distribution of CXCL12 at peak of EAE in SJL is also sexually dimorphic. (a) Expression of CXCL12 (red) and CD31 (green) in brainstem (BS), cerebellum (CB) and spinal cord (SC) with ToPro (blue) nuclear staining. IC: isotype control. (b) Percentage of apicobasal distribution of CXCL12 in relation to CD31 in spinal cord venules. Data derived from venules analyzed within 30 images per brain region for 3-5 mice/treatment group and are expressed as the mean percentages of vessels with abluminal (white box), lumenal (black box) or absent (gray box) CXCL12 signal; *p<0.05; **p<0.01; ***p<0.001for chi-squared comparisons between CXCL12 locations within each brain region.

EAE: Sham

EAE: OVX EAE: OVX+E2

SC

Days Post-Immunization

Supplemental Table 1. Summary of microarray results looking for sexually dimorphic genes among adult SJL cortex and cerebellum.

	microarray hits	unique to	X or Y -linked	autosomal
СВ	23	20	15	5
СТХ	44	41	5	36
both	3		3	
TOTAL	64	61	23	41

		Fold-Change (female vs. male)			
#	Gene symbol	СВ	СТХ	Chromosome	Gene ID
	Known X or Y -linked				
1	Xist	3.837	3.544	Х	Inactive X specific transcripts
	Xist	3.829	2.733	Х	Inactive X specific transcripts
	Xist	2.970	2.762	Х	Inactive X specific transcripts
	Xist	2.070	1.495	Х	Inactive X specific transcripts
2	Utx	1.341	1.317	Х	Lysine (K)-specific demethylase 6A
	Fif2c2v	1 277	1.277 1.348 X	v	Eukaryotic translation initiation factor 2, subunit
3		1.277		~	3, structural gene X-linked
4	lgsf1	1.101	-1.694	Х	Immunoglobulin superfamily, member 1
	lgsf1	1.043	-1.897	Х	Immunoglobulin superfamily, member 1
5	Timp1	-1.215	-1.519	Х	Tissue inhibitor of metalloproteinase 1
6	Pisd-ps3	1.287	1.622	Y	Phosphatidylserine decarboxylase, pseudogene 3
7	LOC382297	-1.311	-1.074	Y	similar to RIKEN cDNA 1700029H17
8	LOC100042351	-1.377	-1.087	Y	Y-linked testis-specific protein 1-like
9	LOC665746	-1.431	1.013	Y	Y-linked testis-specific protein 1-like
10	LOC382133	-1.494	1.002	Y	Spermiogenesis specific transcript on the Y 1, family member
11	LOC665918	-1.619	-1.115	Y	Y-linked testis-specific protein 1-like

12	LOC100039829	-1.727	-1.065	Y	Y-linked testis-specific protein 1-like		
	LOC435023	-1.762	-1.026	Y	similar to Spermiogenesis specific transcript on		
13					the Y 2		
14	LOC100039516	-1.918	-1.100	Y	Y-linked testis-specific protein 1-like		
15	LOC100042550	-2.208	-1.104	Y	Y-linked testis-specific protein 1-like		
16	LOC100041256	-2.220	-1.139	Y	uncharacterized		
17	LOC385575	-2.225	-1.059	Y	similar to RIKEN cDNA 1700029H17		
18	LOC100041934	-2.420	-1.122	Y	Y-linked testis-specific protein 1-like		
19	Ddx3y	-11.042	-9.345	Y	DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y- linked		
20	4921530F17Rik	-2.410	-1.204	Y-linked	Reinius et al, 2010		
	Novel X or Y -linked						
21	A830055109Rik	-1.203	1.524	X-linked	uncharacterized		
22	LOC673556	-1.598	-1.072	Y-linked	hypothetical LOC673556		
23	4930579N16Rik	-1.978	-1.100	Y-linked	uncharacterized		
	Autosomal						
24	Myl1	1.042	1.338	1	Myosin, light polypeptide 1		
25	Rgs4	1.032	1.309	1	Regulator of G-protein signaling 4		
26	R3hdm1	-1.035	1.441	1	R3H domain containing 1		
27	Ppp1r1c	1.039	1.373	2	Protein phosphatase 1, regulatory (inhibitor) subunit 1C		
28	Hdc	1.029	-1.429	2	Histidine decarboxylase		
29	Frmd4a	1.021	1.332	2	FERM domain containing 4A		
30	Cugbp2	-1.039	1.453	2	CUGBP, Elav-like family member 2		
31	Negr1	1.023	1.314	3	Neuronal growth regulator 1		
32	Lhx8	-1.017	-1.333	3	LIM homeobox protein		
	Hsd3h2	-1.037	1.400	3	Hydroxy-delta-5-steroid dehydrogenase, 3 beta-		
33	130302				and steroid delta-isomerase 2		
34	Cort	1.021	1.327	4	Cortistatin		
25	Emp1	_1 186	-1 / 26	6	Enithelial membrane protein 1		

36	Csda [Ybx3]	-1.564	-1.166	6	Cold shock domain protein A
37	Apoc1	-1.004	-1.411	7	Apolipoprotein C-I
38	LOC384552	-1.306	-1.020	7	similar to OBOX4
39	Sorbs2	1.075	1.347	8	Sorbin and SH3 domain containing 2
40	Rasd2	1.054	-1.375	8	RASD family, member 2
		1.005	1 204	0	Tubulin polymerization-promoting protein family
41	Тррр3	1.005	-1.504	0	member 3
42	Zfhx3	-1.012	-1.301	8	Zinc finger homeobox 3
			4 220	0	similar to CKLF-like MARVEL transmembrane
43	LUC100040883	-1.055	-1.320	ð	domain containing 3
44	Necab2	-1.076	-1.325	8	N-terminal EF-hand calcium binding protein 2
45	Calb2	-1.090	-1.636	8	Calbindin 2
46	S1pr2	1.311	-1.092	9	Sphingosine-1-phosphate receptor 2
47	BC038167	-1.071	-1.310	9	Coiled-coil domain containing 153
48	Anln	-1.126	-1.400	9	Anillin, actin binding protein
49	ll20rb	-1.367	1.006	9	Interleukin 20 receptor beta
50	Myl4	1.157	1.482	11	Myosin, light polypeptide 4
51	Foxk2	1.016	1.415	11	Forkhead box K2
52	Slc47a1	-1.047	1.386	11	Solute carrier family 47, member
53	Doc2b	-1.057	-1.312	11	Double C2, beta
54	Samd14	-1.064	-1.393	11	Sterile alpha motif domain containing 14
55	A230065H16Rik	1.025	-1.517	12	RIKEN cDNA A230065H16 gene
56	Tmem90a	-1.083	-1.405	12	Transmembrane protein 90a
57	ldb2	-1.168	1.377	12	Inhibitor of DNA binding 2
58	Nefm	1.337	-1.038	14	Neurofilament, medium polypeptide
59	Tnnc1	1.079	1.582	14	Troponin C, cardiac/slow skeletal
60	Lgals3	-1.142	-1.312	14	Lectin, galactose binding, soluble 3
61	Sdf2l1	-1.017	-1.339	16	Stromal cell-derived factor 2-like 1
62	Adcyap1	1.076	1.365	17	Adenylate cyclase activating polypeptide 1
63	2900055J20Rik	1.033	1.390	18	RIKEN cDNA 2900055J20 gene
64	Cd6	1.015	1.347	19	CD6 antigen

Patient number	Age (yrs)	Sex	PMI (hrs)	Diagnosis	CNS level	Inflammation	Demyelination	ORO
non-MS								
1	62	female	unknown	post-surgical dehiscence sepsis	cerebellum	_	_	_
94	73	male	3	CA, CAD, HTN, MI, atypical lower MND*	cerebrum	_	_	_
210	41	male	24	non-ischemic cardiomyopathy, HTN, small bowel ischemia	cerebellum	_	**	_
509	71	female	7	pancreatic cancer	cerebrum	_	—	_
525	81	male	3	МІ	periventricular white matter	_	_	_
561	77	male	6	CAD***	cerebellum	_	—	_
632	56	female	18	emphysema & artherosclerosis	cerebellum	_	—	_
908	84	female	6	pulmonary embolism	cerebellum	_	_	_
938	39	female	4	CNS lymphoma	cerebellum	_	_	_
MS cases								
58	64	female	10	RRMS	cerebellum	—	†	_
71	69	male	6	PPMS	cerebellum	—	—	—
101	46	female	6	SPMS	cerebellum	_	—	_
107	88	male	6	PRMS	cerebellum	—	—	—
234	95	female	8	SPMS	cerebellum	—	—	—
271	50	female	20	SPMS	cerebellum	_	++++	—
303	45	female	3	PPMS	cerebellum	<u>++++</u>	†	<u>+++</u> +
305	70	male	8	SPMS	cerebellum	—	—	_
388	69	female	9	RRMS	cerebellum	—	—	_
650	35	male	10	PPMS	cerebellum	†	†	††
1101	54	male	7	SPMS	cerebellum	_	_	_

PMI: post-mortem interval, PPMS: primary progressive MS, PRMS: progressive-relapsing MS, RRMS: relapsing-remitting MS, SPMS: secondary progressive MS, CA: cardiac arrest, CAD: coronary artery disease, HTN: hypertension, MI: myocardial infraction, MND: motor neuron disease, *Patient received intravenous immunoglobulin treatment. **Biopsy showed a slightly pale site, presumably an artifact as assessed by its location and shape. ***Biopsy showed some features similar to Alzheimer's but patient has no clinical history of AD.