Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • Nuclear Receptors (Apr 2017)
    • Metabolism and Inflammation (Jan 2017)
    • Hypoxia and Inflammation (Oct 2016)
    • View all review series...
  • Collections
    • Recently published
    • Commentaries
    • Concise Communication
    • Editorials
    • Opinion
    • Scientific Show Stoppers
    • Top read articles
    • In-Press Preview
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Hepatic β-arrestin 2 is essential for maintaining euglycemia
Lu Zhu, … , Wei Chen, Jürgen Wess
Lu Zhu, … , Wei Chen, Jürgen Wess
Published August 1, 2017
Citation Information: J Clin Invest. 2017;127(8):2941-2945. https://doi.org/10.1172/JCI92913.
View: Text | PDF
Categories: Brief Report Endocrinology Metabolism

Hepatic β-arrestin 2 is essential for maintaining euglycemia

  • Text
  • PDF
Abstract

An increase in hepatic glucose production (HGP) represents a key feature of type 2 diabetes. This deficiency in metabolic control of glucose production critically depends on enhanced signaling through hepatic glucagon receptors (GCGRs). Here, we have demonstrated that selective inactivation of the GPCR-associated protein β-arrestin 2 in hepatocytes of adult mice results in greatly increased hepatic GCGR signaling, leading to striking deficits in glucose homeostasis. However, hepatocyte-specific β-arrestin 2 deficiency did not affect hepatic insulin sensitivity or β-adrenergic signaling. Adult mice lacking β-arrestin 1 selectively in hepatocytes did not show any changes in glucose homeostasis. Importantly, hepatocyte-specific overexpression of β-arrestin 2 greatly reduced hepatic GCGR signaling and protected mice against the metabolic deficits caused by the consumption of a high-fat diet. Our data support the concept that strategies aimed at enhancing hepatic β-arrestin 2 activity could prove useful for suppressing HGP for therapeutic purposes.

Authors

Lu Zhu, Mario Rossi, Yinghong Cui, Regina J. Lee, Wataru Sakamoto, Nicole A. Perry, Nikhil M. Urs, Marc G. Caron, Vsevolod V. Gurevich, Grzegorz Godlewski, George Kunos, Minyong Chen, Wei Chen, Jürgen Wess

×

Figure 1

Insulin signaling is not impaired in hep-barr2–KO mice.

Options: View larger image (or click on image) Download as PowerPoint
Insulin signaling is not impaired in hep-barr2–KO mice.
(A) i.p. ITT. Da...
(A) i.p. ITT. Data are shown as mean ± SEM (n = 9 mice per group, 20-week-old males). (B) Insulin-induced phosphorylation of AKT and GSK3α/β remains unaffected by the lack of β-arrestin 2 in hepatocytes. Primary hepatocytes prepared from hep-barr2–KO and control mice were incubated with insulin (10 nM) or saline for 15 minutes. Cell lysates were used for immunoblotting with the indicated antibodies. Representative blots are shown. See complete unedited blots in the supplemental material. (C) Quantification via densitometry (NIH ImageJ software) of the immunoblotting data shown in B. Phospho-protein expression levels were normalized by total AKT or total GSK3α/β expression, respectively. Data represent mean ± SEM (n = 5 mice per group, 16- to 20-week-old males). (D and E). Hyperinsulinemic euglycemic clamp studies. In D, the time course of blood glucose and GIR are shown. Data in panel E were obtained during the steady-state period of the clamp (gray area in D). Values are shown as mean ± SEM (n = 3 or 4 mice per group, 20-week-old males).
Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2018 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts